Probabilistic machine learning estimation of ocean mixed layer depth from dense satellite and sparse in situ observations
To Access Resource:
Questions? Email Resource Support Contact:
-
opensky@ucar.edu
UCAR/NCAR - Library
Resource Type | publication |
---|---|
Temporal Range Begin | N/A |
Temporal Range End | N/A |
Temporal Resolution | N/A |
Bounding Box North Lat | N/A |
Bounding Box South Lat | N/A |
Bounding Box West Long | N/A |
Bounding Box East Long | N/A |
Spatial Representation | N/A |
Spatial Resolution | N/A |
Related Links |
Related Dataset #1 : HIPPO Merged 10-Second Meteorology, Atmospheric Chemistry, and Aerosol Data. Version 1.0 Related Dataset #2 : ATom: Merged Atmospheric Chemistry, Trace Gases, and Aerosols Related Dataset #3 : TROPESS AIRS-Aqua L2 Carbon Monoxide for Forward Stream, Standard Product V1 |
Additional Information | N/A |
Resource Format |
PDF |
Standardized Resource Format |
PDF |
Asset Size | N/A |
Legal Constraints |
Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |
Access Constraints |
None |
Software Implementation Language | N/A |
Resource Support Name | N/A |
---|---|
Resource Support Email | opensky@ucar.edu |
Resource Support Organization | UCAR/NCAR - Library |
Distributor | N/A |
Metadata Contact Name | N/A |
Metadata Contact Email | opensky@ucar.edu |
Metadata Contact Organization | UCAR/NCAR - Library |
Author |
Foster, D. Gagne, David John Whitt, Daniel |
---|---|
Publisher |
UCAR/NCAR - Library |
Publication Date | 2021-12-30T00:00:00 |
Digital Object Identifier (DOI) | Not Assigned |
Alternate Identifier | N/A |
Resource Version | N/A |
Topic Category |
geoscientificInformation |
Progress | N/A |
Metadata Date | 2025-07-11T16:08:15.333507 |
Metadata Record Identifier | edu.ucar.opensky::articles:24996 |
Metadata Language | eng; USA |
Suggested Citation | Foster, D., Gagne, David John, Whitt, Daniel. (2021). Probabilistic machine learning estimation of ocean mixed layer depth from dense satellite and sparse in situ observations. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d72f7rzj. Accessed 09 August 2025. |
Harvest Source
- ISO-19139 ISO-19139 Metadata