Solar cycle variations of thermospheric composition at the solstices

We examine the solar cycle variability of thermospheric composition (O/N2) at the solstices. Our observational and modeling studies show that the summer-to-winter latitudinal gradient of O/N2 is small at solar minimum but large at solar maximum; O/N2 is larger at solar maximum than at solar minimum on a global-mean basis; there is a seasonal asymmetry in the solar cycle variability of O/N2, with large solar cycle variations in the winter hemisphere and small solar cycle variations in the summer hemisphere. Model analysis reveals that vertical winds decrease the temperature-driven solar cycle variability in the vertical gradient of O/N2 in the summer hemisphere but increase it in the winter hemisphere; consequently, the vertical gradient of O/N2 does not change much in the summer hemisphere over a solar cycle, but it increases greatly from solar minimum to solar maximum in the winter hemisphere; this seasonal asymmetry in the solar cycle variability in the vertical gradient of O/N2 causes a seasonal asymmetry in the vertical advection of O/N2, with small solar cycle variability in the summer hemisphere and large variability in the winter hemisphere, which in turn drives the observed seasonal asymmetry in the solar cycle variability of O/N2. Since the equatorial ionization anomaly suppresses upwelling in the summer hemisphere and strengthens downwelling in the winter hemisphere through plasma-neutral collisional heating and ion drag, locations and relative magnitudes of the equatorial ionization anomaly crests and their solar cycle variabilities can significantly impact the summer-to-winter gradients of O/N2 and their solar cycle variability.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2016 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Qian, Liying
Burns, Alan
Solomon, Stanley
Wang, Wenbin
Zhang, Yongliang
Publisher UCAR/NCAR - Library
Publication Date 2016-04-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:02:37.906239
Metadata Record Identifier edu.ucar.opensky::articles:18618
Metadata Language eng; USA
Suggested Citation Qian, Liying, Burns, Alan, Solomon, Stanley, Wang, Wenbin, Zhang, Yongliang. (2016). Solar cycle variations of thermospheric composition at the solstices. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7pv6n1j. Accessed 21 June 2025.

Harvest Source