Variability and predictability of the space environment as related to lower atmosphere forcing

The Earth's thermosphere and ionosphere (TI) are characterized by perpetual variability as integral parts of the atmosphere system, with intermittent disturbances from solar and geomagnetic forcing. This review examines how the TI variability is affected by processes originating from the lower atmosphere and implications for quantifying and forecasting the TI. This aspect of the TI variability has been increasingly appreciated in recent years from both observational and numerical studies, especially during the last extended solar minimum. This review focuses on the role of atmospheric waves, including tides, planetary waves, gravity waves, and acoustic waves, which become increasingly significant as they propagate from their source region to the upper atmosphere. Recent studies have led to better understanding of how these waves directly or indirectly affect TI wind, temperature, and compositional structures; the circulation pattern; neutral and ion species transport; and ionospheric wind dynamo. The variability of these waves on daily to interannual scales has been found to significantly impact the TI variability. Several outstanding questions and challenges have been highlighted: (i) large, seemingly stochastic, day-to-day variability of tides in the TI; (ii) control of model error in the TI region by the lower atmosphere; and (iii) the increasing importance of processes with shorter spatial and temporal scales at higher altitudes. Addressing these challenges requires model capabilities to assimilate observations of both lower and upper atmosphere and higher model resolution to capture complex interactions among processes over a broad range of scales and extended altitudes.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2016 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Liu, Hanli
Publisher UCAR/NCAR - Library
Publication Date 2016-09-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T20:31:46.982882
Metadata Record Identifier edu.ucar.opensky::articles:18876
Metadata Language eng; USA
Suggested Citation Liu, Hanli. (2016). Variability and predictability of the space environment as related to lower atmosphere forcing. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7k64kqf. Accessed 30 July 2025.

Harvest Source