Importance of forecast error multivariate correlations in idealized assimilations of GPS radio occultation data with the ensemble adjustment filter

The importance of multivariate forecast error correlations between specific humidity, temperature, and surface pressure in perfect model assimilations of Global Positioning System radio occultation (RO) refractivity data is examined using the Ensemble Adjustment Filter (EAF) and the NCAR global Community Atmospheric Model, version 3. The goal is to explore whether inclusion of the multivariate forecast error correlations in the background term of 3D and 4D variational data assimilation systems (3DVAR and 4DVAR, respectively) is likely to improve RO data assimilation in the troposphere. It is not possible to explicitly neglect multivariate forecast error correlations with the EAF because they are not used directly in the algorithm. Instead, the filter only makes use of the forecast error correlations between observed quantities (RO here) and model state variables. However, because the forecast error correlations for RO observations are dominated by correlations with a subset of state variable types in certain regions, the importance of multivariate forecast error correlations between state variables can be indirectly assessed. This is done by setting the forecast error correlations of RO observations and some state variables (e.g., temperature) to zero in a set of assimilation experiments. Comparing these experiments to a control in which all state variables are impacted by RO observations allows an indirect assessment of the importance of multivariate correlations between state variables not impacted by the observations and those that are impacted. Results suggest that proper specification of the multivariate forecast error correlations in 3DVAR and 4DVAR systems should improve the analysis of specific humidity, surface pressure, and temperature in the troposphere when assimilating RO data.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2007 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Liu, Hui
Anderson, Jeffrey L.
Kuo, Ying-Hwa
Raeder, Kevin D.
Publisher UCAR/NCAR - Library
Publication Date 2007-01-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-17T17:03:34.997051
Metadata Record Identifier edu.ucar.opensky::articles:6066
Metadata Language eng; USA
Suggested Citation Liu, Hui, Anderson, Jeffrey L., Kuo, Ying-Hwa, Raeder, Kevin D.. (2007). Importance of forecast error multivariate correlations in idealized assimilations of GPS radio occultation data with the ensemble adjustment filter. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7m908vb. Accessed 31 July 2025.

Harvest Source