Meridional circulation dynamics in a cyclic convective dynamo

Surface observations indicate that the speed of the solar meridional circulation in the photosphere varies in anti-phase with the solar cycle. The current explanation for the source of this variation is that inflows into active regions alter the global surface pattern of the meridional circulation. When these localized inflows are integrated over a full hemisphere, they contribute to slowing down the axisymmetric poleward horizontal component. The behavior of this large-scale flow deep inside the convection zone remains largely unknown. Present helioseismic techniques are not sensitive enough to capture the dynamics of this weak large-scale flow. Moreover, the large time of integration needed to map the meridional circulation inside the convection zone, also masks some of the possible dynamics on shorter timescales. In this work we examine the dynamics of the meridional circulation that emerges from a 3D MHD global simulation of the solar convection zone. Our aim is to assess and quantify the behavior of meridional circulation deep inside the convection zone where the cyclic large-scale magnetic field can reach considerable strength. Our analyses indicate that the meridional circulation morphology and amplitude are both highly influenced by the magnetic field via the impact of magnetic torques on the global angular momentum distribution. A dynamic feature induced by these magnetic torques is the development of a prominent upward flow at mid-latitudes in the lower convection zone that occurs near the equatorward edge of the toroidal bands and that peaks during cycle maximum. Globally, the dynamo-generated large-scale magnetic field drives variations in the meridional flow, in stark contrast to the conventional kinematic flux transport view of the magnetic field being advected passively by the flow.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2017 European Southern Observatory.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Passos, D.
Miesch, Mark
Guerrero, G.
Charbonneau, P.
Publisher UCAR/NCAR - Library
Publication Date 2017-11-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T19:44:38.511723
Metadata Record Identifier edu.ucar.opensky::articles:21426
Metadata Language eng; USA
Suggested Citation Passos, D., Miesch, Mark, Guerrero, G., Charbonneau, P.. (2017). Meridional circulation dynamics in a cyclic convective dynamo. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7s46vns. Accessed 31 July 2025.

Harvest Source