Ozone impact from solar energetic particles cools the polar stratosphere

Understanding atmospheric impacts of solar energetic particle precipitation (EPP) remains challenging, from quantification of the response in ozone, to implications on temperature. Both are necessary to understand links between EPP and regional climate variability. Here we use a chemistry-climate model to assess the importance of EPP on late winter/spring polar stratosphere. In transient simulations, the impact on NOy, ozone, and temperature is underestimated when using EPP forcing from the current recommendation of the Coupled Model Intercomparison Project (CMIP6). The resulting temperature response is largely masked by overall dynamical variability. An idealised experiment with EPP forcing that reproduces observed levels of NOy results in a significant reduction of ozone (up to 25%), cooling the stratosphere (up to 3 K) during late winter/spring. Our results unravel the inconsistency regarding the temperature response to EPP-driven springtime ozone decrease, and highlight the need for an improved EPP forcing in climate simulations.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Szela̧g, M. E.
Marsh, Daniel
Verronen, P. T.
Seppälä, A.
Kalakoski, N.
Publisher UCAR/NCAR - Library
Publication Date 2022-11-12T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T15:57:42.100009
Metadata Record Identifier edu.ucar.opensky::articles:25887
Metadata Language eng; USA
Suggested Citation Szela̧g, M. E., Marsh, Daniel, Verronen, P. T., Seppälä, A., Kalakoski, N.. (2022). Ozone impact from solar energetic particles cools the polar stratosphere. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7q52tgb. Accessed 03 August 2025.

Harvest Source