Climate, CO₂ and human population impacts on global wildfire emissions

Wildfires are by far the largest contributor to global biomass burning and constitute a large global source of atmospheric traces gases and aerosols. Such emissions have a considerable impact on air quality and constitute a major health hazard. Biomass burning also influences the radiative balance of the atmosphere and is thus not only of societal, but also of significant scientific interest. There is a common perception that climate change will lead to an increase in emissions as hot and dry weather events that promote wildfire will become more common. However, even though a few studies have found that the inclusion of CO₂ fertilisation of photosynthesis and changes in human population patterns will tend to somewhat lower predictions of future wildfire emissions, no such study has included full ensemble ranges of both climate predictions and population projections, including the effect of different degrees of urbanisation. Here, we present a series of 124 simulations with the LPJ-GUESS-SIMFIRE global dynamic vegetation-wildfire model, including a semi-empirical formulation for the prediction of burned area based on fire weather, fuel continuity and human population density. The simulations use Climate Model Intercomparison Project 5 (CMIP5) climate predictions from eight Earth system models. These were combined with two Representative Concentration Pathways (RCPs) and five scenarios of future human population density based on the series of Shared Socioeconomic Pathways (SSPs) to assess the sensitivity of emissions to the effect of climate, CO₂ and humans. In addition, two alternative parameterisations of the semi-empirical burned-area model were applied. Contrary to previous work, we find no clear future trend of global wildfire emissions for the moderate emissions and climate change scenario based on the RCP 4.5. Only historical population change introduces a decline by around 15 % since 1900. Future emissions could either increase for low population growth and fast urbanisation, or continue to decline for high population growth and slow urbanisation. Only for high future climate change (RCP8.5), wildfire emissions start to rise again after ca. 2020 but are unlikely to reach the levels of 1900 by the end of the 21st century. We find that climate warming will generally increase the risk of fire, but that this is only one of several equally important factors driving future levels of wildfire emissions, which include population change, CO₂ fertilisation causing woody thickening, increased productivity and fuel load and faster litter turnover in a warmer climate.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2016 Authors. This work is distributed under the Creative Commons Attribution 3.0 License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Knorr, W.
Jiang, Leiwen
Arneth, A.
Publisher UCAR/NCAR - Library
Publication Date 2016-01-15T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:25:49.068464
Metadata Record Identifier edu.ucar.opensky::articles:18035
Metadata Language eng; USA
Suggested Citation Knorr, W., Jiang, Leiwen, Arneth, A.. (2016). Climate, CO₂ and human population impacts on global wildfire emissions. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d70k2b37. Accessed 27 June 2025.

Harvest Source