Constraining a 3DVAR radar data assimilation system with large-scale analysis to improve short-range precipitation forecasts

It is known from previous studies that radar data assimilation can improve short-range forecasts of precipitation, mainly when radial wind and reflectivity are available. However, from the authors’ experience radar data assimilation, when using the three-dimensional variational data assimilation (3DVAR) technique, can produce spurious precipitation results and large errors in the position and amount of precipitation. One possible reason for the problem is attributed to the lack of proper balance in the dynamical and microphysical fields. This work attempts to minimize this problem by adding a large-scale analysis constraint in the cost function. The large-scale analysis constraint is defined by the departure of the high-resolution 3DVAR analysis from a coarser-resolution large-scale analysis. It is found that this constraint is able to guide the assimilation process in such a way that the final result still maintains the large-scale pattern, while adding the convective characteristics where radar data are available. As a result, the 3DVAR analysis with the constraint is more accurate when verified against an independent dataset. The performance of this new constraint on improving precipitation forecasts is tested using six convective cases and verified against radar-derived precipitation by employing four skill indices. All of the skill indices show improved forecasts when using the methodology presented in this paper.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2016 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Vendrasco, Eder
Sun, Juanzhen
Herdies, Dirceu
de Angelis, Carlos
Publisher UCAR/NCAR - Library
Publication Date 2016-03-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:01:18.805654
Metadata Record Identifier edu.ucar.opensky::articles:18365
Metadata Language eng; USA
Suggested Citation Vendrasco, Eder, Sun, Juanzhen, Herdies, Dirceu, de Angelis, Carlos. (2016). Constraining a 3DVAR radar data assimilation system with large-scale analysis to improve short-range precipitation forecasts. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d76h4k0q. Accessed 28 June 2025.

Harvest Source