Deep-learning-based gridded downscaling of surface meteorological variables in complex terrain. Part II: Daily precipitation

Statistical downscaling (SD) derives localized information from larger-scale numerical models. Convolutional neural networks (CNNs) have learning and generalization abilities that can enhance the downscaling of gridded data (Part I of this study experimented with 2-m temperature). In this research, we adapt a semantic-segmentation CNN, called UNet, to the downscaling of daily precipitation in western North America, from the low resolution (LR) of 0.25 degrees to the high resolution (HR) of 4-km grid spacings. We select LR precipitation, HR precipitation climatology, and elevation as inputs; train UNet over the subset of the south- and central-western United States using Parameter-Elevation Regressions on Independent Slopes Model (PRISM) data from 2015 to 2018, and test it independently in all available domains from 2018 to 2019. We proposed an improved version of UNet, which we call Nest-UNet, by adding deep-layer aggregation and nested skip connections. Both the original UNet and Nest-UNet show generalization ability across different regions and outperform the SD baseline (bias-correction spatial disaggregation), with lower downscaling error and more accurate fine-grained textures. Nest-UNet also shares the highest amount of information with station observations and PRISM, indicating good ability to reduce the uncertainty of HR downscaling targets.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Sha, Yingkai
Gagne II, David John
West, Gregory
Stull, Roland
Publisher UCAR/NCAR - Library
Publication Date 2020-12-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:31:03.737589
Metadata Record Identifier edu.ucar.opensky::articles:24010
Metadata Language eng; USA
Suggested Citation Sha, Yingkai, Gagne II, David John, West, Gregory, Stull, Roland. (2020). Deep-learning-based gridded downscaling of surface meteorological variables in complex terrain. Part II: Daily precipitation. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7cv4n3w. Accessed 23 June 2025.

Harvest Source