Deforestation strengthens atmospheric transport of mineral dust and phosphorus from North Africa to the Amazon

Phosphorus contained in atmospheric mineral dust aerosol originating from Africa fertilizes tropical forests in Amazonia. However, the mechanisms influencing this nutrient transport pathway remain poorly understood. Here we use the Community Earth System Model to investigate how large-scale deforestation affects mineral dust aerosol transport and deposition in the tropics. We find that the surface biophysical changes that accompany deforestation produce a warmer, drier, and windier surface environment that perturbs atmospheric circulation and enhances long-range dust transport from North Africa to the Amazon. Tropics-wide deforestation weakens the Hadley circulation, which then leads to a northward expansion of the Hadley cell and increases surface air pressure over the Sahara Desert. The high pressure anomaly over the Sahara, in turn, increases northeasterly winds across North Africa and the tropical North Atlantic Ocean, which subsequently increases dust transport to the South American continent. We estimate that the annual atmospheric phosphorus deposition from dust significantly increases by 27% (P < 0.01) in the Amazon under a scenario of complete deforestation. These interactions exemplify how land surface changes can modify tropical nutrient cycling, which, in turn, may have consequences for long-term changes in tropical ecosystem productivity and biodiversity.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2021 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Li, Yue
Randerson, James T.
Mahowald, Natalie M.
Lawrence, Peter J.
Publisher UCAR/NCAR - Library
Publication Date 2021-08-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:29:29.979115
Metadata Record Identifier edu.ucar.opensky::articles:24589
Metadata Language eng; USA
Suggested Citation Li, Yue, Randerson, James T., Mahowald, Natalie M., Lawrence, Peter J.. (2021). Deforestation strengthens atmospheric transport of mineral dust and phosphorus from North Africa to the Amazon. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7p55rx5. Accessed 26 June 2025.

Harvest Source