Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter

The usefulness of a distance-dependent reduction of background error covariance estimates in an ensemble Kalman filter is demonstrated. Covariances are reduced by performing an elementwise multiplication of the background error covariance matrix with a correlation function with local support. This reduces noisiness and results in an improved background error covariance estimate, which generates a reduced-error ensemble of model initial conditions. The benefits of applying the correlation function can be understood in part from examining the characteristics of simple 2 × 2 covariance matrices generated from random sample vectors with known variances and covariance. These show that noisiness in covariance estimates tends to overwhelm the signal when the ensemble size is small and/or the true covariance between the sample elements is small. Since the true covariance of forecast errors is generally related to the distance between grid points, covariance estimates generally have a higher ratio of noise to signal with increasing distance between grid points, This property is also demonstrated using a two-layer hemispheric primitive equation model and comparing covariance estimates generated by small and large ensembles. Covariances from the large ensemble are assumed to be accurate and are used a reference for measuring errors from covariances estimated from a small ensemble. The benefits of including distance-dependent reduction of covariance estimates are demonstrated with an ensemble Kalman filter data assimilation scheme. The optimal correlation length scale of the filter function depends on ensemble size; larger correlation lengths are preferable for larger ensembles. The effects of inflating background error covariance estimates are examined as a way of stabilizing the filter. It was found that more inflation was necessary for smaller ensembles than for larger ensembles.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2001 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statement, requires written permission or a license form the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/AMS) or from the AMS at 617-227-2425 or copyright@ametsoc.org.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Hamill, Thomas
Whitaker, Jeffrey
Snyder, Chris
Publisher UCAR/NCAR - Library
Publication Date 2001-11-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:08:08.726953
Metadata Record Identifier edu.ucar.opensky::articles:10260
Metadata Language eng; USA
Suggested Citation Hamill, Thomas, Whitaker, Jeffrey, Snyder, Chris. (2001). Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d78g8m8h. Accessed 21 June 2025.

Harvest Source