Effects of irrigation on summer precipitation over the United States

Irrigation’s effects on precipitation during an exceptionally dry summer (June-August 2012) in the United States were quantified by incorporating a novel dynamic irrigation scheme into the Weather Research and Forecasting (WRF) Model. The scheme is designed to represent a typical application strategy for farmlands across the conterminous United States (CONUS) and a satellite-derived irrigation map was incorporated into the WRF-Noah-Mosaic module to realistically trigger the irrigation. Results show that this new irrigation approach can dynamically generate irrigation water amounts that are in close agreement with the actual irrigation water amounts across the high plains (HP), where the prescribed scheme best matches real-world irrigation practices. Surface energy and water budgets have been substantially altered by irrigation, leading to modified large-scale atmospheric circulations. In the studied dry summer, irrigation was found to strengthen the dominant interior high pressure system over the southern and central United States and deepen the trough over the upper Midwest. For the HP and central United States, the rainfall amount is slightly reduced over irrigated areas, likely as a result of a reduction in both local convection and large-scale moisture convergence resulting from interactions and feedbacks between the land surface and atmosphere. In areas downwind of heavily irrigated regions, precipitation is enhanced, resulting in a 20%-100% reduction in the dry biases (relative to the observations) simulated over a large portion of the downwind areas without irrigation in the model. The introduction of irrigation reduces the overall mean biases and root-mean-square errors in the simulated daily precipitation over the CONUS.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2016 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Pei, Lisi
Moore, Nathan
Zhong, Shiyuan
Kendall, Anthony D.
Gao, Zhiqiu
Hyndman, David
Publisher UCAR/NCAR - Library
Publication Date 2016-05-15T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:10:49.945820
Metadata Record Identifier edu.ucar.opensky::articles:18465
Metadata Language eng; USA
Suggested Citation Pei, Lisi, Moore, Nathan, Zhong, Shiyuan, Kendall, Anthony D., Gao, Zhiqiu, Hyndman, David. (2016). Effects of irrigation on summer precipitation over the United States. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7z3218m. Accessed 01 July 2025.

Harvest Source