Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis

This study evaluates the sensitivity of winter precipitation to numerous aspects of a bulk, mixed-phase microphysical parameterization found in three widely used mesoscale models [the fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (MM5), the Rapid Update Cycle (RUC), and the Weather Research and Forecast (WRF) model]. Sensitivities of the microphysics to primary ice initiation, autoconversion, cloud condensation nuclei (CCN) spectra, treatment of graupel, and parameters controlling the snow and rain size distributions are tested. The sensitivity tests are performed by simulating various cloud depths (with different cloud-top temperatures) using flow over an idealized two-dimensional mountain. The height and width of the two-dimensional barrier are designed to reproduce an updraft pattern with extent and magnitude consistent with documented freezing-drizzle cases. By increasing the moisture profile to saturation at low temperatures, a deep, precipitating snow cloud is also simulated. Upon testing the primary sensitivities of the microphysics scheme in two dimensions as reported in the present study, the MM5 with the modified scheme will be tested in multiple case studies and the results will be compared to observations in a forthcoming companion paper, Part II. The key results of this study are 1) the choice of ice initiation schemes is relatively unimportant for deep precipitating snow clouds but more important for shallow warm clouds having cloud-top temperature greater than -13°C, 2) the assumed snow size distribution and associated snow diffusional growth along with the assumed graupel size distribution and method of transforming rimed snow into graupel have major impacts on the mass of cloud water and formation of freezing drizzle, and 3) a proper simulation of drizzle using a single-moment scheme and exponential size distribution requires an increase in the rain intercept parameter, thereby reducing rain terminal velocities to values more characteristic of drizzle.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2004 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statement, requires written permission or a license form the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/AMS) or from the AMS at 617-227-2425 or copyright@ametsoc.org.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Thompson, Gregory
Rasmussen, Roy
Manning, Kevin
Publisher UCAR/NCAR - Library
Publication Date 2004-02-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:54:57.916629
Metadata Record Identifier edu.ucar.opensky::articles:10258
Metadata Language eng; USA
Suggested Citation Thompson, Gregory, Rasmussen, Roy, Manning, Kevin. (2004). Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7sf2wr4. Accessed 18 July 2025.

Harvest Source