Ice cloud particle size distributions and pressure-dependent terminal velocities from in situ observations at temperatures from 0° to -86°C

The primary goal of this study is to derive ice particle terminal velocities from micron to centimeter sizes and for atmospheric pressures covering the range 200–1000 hPa from data spanning a wide range of locations, temperatures, and altitudes and to parameterize the results for use in cloud through cloud models. The study uses data from 10 field programs spanning the temperature range −86° to 0°C and encompassing a total of about 800 000 km of cloud horizontal pathlengths and includes measurements of ice particle size distributions (PSDs) and direct measurements of the ice water content (IWC). The necessary ice particle variables are derived using variables that are interconnected rather than varying independently from observations reported in the literature. A secondary goal of the study is to quantify the properties of ice cloud particle ensembles over a wide range of temperatures to further the understanding of how ice particle ensembles and ice clouds develop. Functional forms for the PSDs and mass– and area–dimensional relationships are developed from the observations and summarized in a table. The PSDs are found to be nearly exponential at temperatures from about -40° to -10°C although deviations from exponentiality are noted outside of this range. It is demonstrated that previous pressure-dependent corrections to ice fall speeds lead to overestimated terminal velocities for particles smaller than 1 mm, particularly so for sizes below 100 μm, with consequent effects on modeled lifetimes of cold ice clouds.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2013 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Heymsfield, Andrew
Schmitt, Carl
Bansemer, Aaron
Publisher UCAR/NCAR - Library
Publication Date 2013-12-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:04:23.170050
Metadata Record Identifier edu.ucar.opensky::articles:13055
Metadata Language eng; USA
Suggested Citation Heymsfield, Andrew, Schmitt, Carl, Bansemer, Aaron. (2013). Ice cloud particle size distributions and pressure-dependent terminal velocities from in situ observations at temperatures from 0° to -86°C. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7x34zb4. Accessed 20 June 2025.

Harvest Source