Impacts of the aerosol representation in WRF-solar clear-sky irradiance forecasts over CONUS

Aerosol optical depth (AOD) is a primary source of solar irradiance forecast error in clear-sky conditions. Improving the accuracy of AOD in NWP models like WRF will thus reduce error in both direct normal irradiance (DNI) and global horizontal irradiance (GHI), which should improve solar power forecast errors, at least in cloud-free conditions. In this study clear-sky GHI and DNI was analyzed from four configurations of the WRF-Solar model with different aerosol representations: 1) the default Tegen climatology, 2) imposing AOD forecasts from the GEOS-5 model, 3) imposing AOD forecasts from the Copernicus Atmosphere Monitoring Service (CAMS) model, and 4) the Thompson-Eidhammer aerosol-aware water/ice-friendly aerosol climatology. More than 8 months of these 15-min output forecasts are compared with high-quality irradiance observations at NOAA SURFRAD and Solar Radiation (SOLRAD) stations located across CONUS. In general, WRF-Solar with GEOS-5 AOD had the lowest errors in clear-sky DNI, while WRF-Solar with CAMS AOD had the highest errors, higher even than the two aerosol climatologies, which is consistent with validation of the four AOD550 datasets against AERONET stations. For clear-sky GHI, the statistics differed little between the four models, as expected because of the lesser sensitivity of GHI to aerosol loading. Hourly average clear-sky DNI and GHI were also analyzed, and they were additionally compared with CAMS model output directly. CAMS irradiance performed competitively with the best WRF-Solar configuration (with GEOS-5 AOD). The markedly different performance of CAMS versus WRF-Solar with CAMS AOD indicates that CAMS is apparently less sensitive to AOD550 than WRF-Solar is.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2023 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Lee, Jared
Jiménez Munoz, Pedro A.
Dudhia, Jimy
Saint-Drenan, Y.
Publisher UCAR/NCAR - Library
Publication Date 2023-02-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T15:54:56.828891
Metadata Record Identifier edu.ucar.opensky::articles:26130
Metadata Language eng; USA
Suggested Citation Lee, Jared, Jiménez Munoz, Pedro A., Dudhia, Jimy, Saint-Drenan, Y.. (2023). Impacts of the aerosol representation in WRF-solar clear-sky irradiance forecasts over CONUS. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7ff3x8j. Accessed 22 August 2025.

Harvest Source