Improving PM2. 5 forecast over China by the joint adjustment of initial conditions and source emissions with an ensemble Kalman filter

In an attempt to improve the forecasting of atmospheric aerosols, the ensemble square root filter algorithm was extended to simultaneously optimize the chemical initial conditions (ICs) and emission input. The forecast model, which was expanded by combining the Weather Research and Forecasting with Chemistry (WRF-Chem) model and a forecast model of emission scaling factors, generated both chemical concentration fields and emission scaling factors. The forecast model of emission scaling factors was developed by using the ensemble concentration ratios of the WRF-Chem forecast chemical concentrations and also the time smoothing operator. Hourly surface fine particulate matter (PM2.5) observations were assimilated in this system over China from 5 to 16 October 2014. A series of 48 h forecasts was then carried out with the optimized initial conditions and emissions on each day at 00:00UTC and a control experiment was performed without data assimilation. In addition, we also performed an experiment of pure assimilation chemical ICs and the corresponding 48 h forecasts experiment for comparison. The results showed that the forecasts with the optimized initial conditions and emissions typically outperformed those from the control experiment. In the Yangtze River delta (YRD) and the Pearl River delta (PRD) regions, large reduction of the root-mean-square errors (RMSEs) was obtained for almost the entire 48 h forecast range attributed to assimilation. In particular, the relative reduction in RMSE due to assimilation was about 37.5% at nighttime when WRF-Chem performed comparatively worse. In the Beijing-Tianjin-Hebei (JJJ) region, relatively smaller improvements were achieved in the first 24 h forecast but then no improvements were achieved afterwards. Comparing to the forecasts with only the optimized ICs, the forecasts with the joint adjustment were always much better during the night in the PRD and YRD regions. However, they were very similar during daytime in both regions. Also, they performed similarly for almost the entire 48 h forecast range in the JJJ region.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Peng, Zhen
Liu, Zhiquan
Chen, Dan
Ban, Junmei
Publisher UCAR/NCAR - Library
Publication Date 2017-04-13T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:14:27.976545
Metadata Record Identifier edu.ucar.opensky::articles:19739
Metadata Language eng; USA
Suggested Citation Peng, Zhen, Liu, Zhiquan, Chen, Dan, Ban, Junmei. (2017). Improving PM2. 5 forecast over China by the joint adjustment of initial conditions and source emissions with an ensemble Kalman filter. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7t43vxj. Accessed 24 June 2025.

Harvest Source