Improving the representation of supercooled liquid water in the HARMONIE-AROME weather forecast model

A realistic representation of mixed-phase clouds in weather and climate models is essential to accurately simulate the model's radiative balance and water cycle. In addition, it is important for providing downstream applications with physically realistic model data for computation of, for instance, atmospheric icing on societal infrastructure and aircraft. An important quantity for forecasts of atmospheric icing is to model accurately supercooled liquid water (SLW). In this study, we implement elements from the Thompson cloud microphysics scheme into the numerical weather prediction model HARMONIE-AROME, with the aim to improve its ability to predict SLW. We conduct an idealised process-level evaluation of microphysical processes, and analyse the water phase budget of clouds and precipitation to compare the modified and original schemes, and also identify the processes with the most impact to form SLW. Two idealised cases representing orographic lift and freezing drizzle, both known to generate significant amounts of SLW, are setup in a 1 D column version of HARMONIE-AROME. The experiments show that the amount of SLW is largely sensitive to the ice initiation processes, snow and graupel collection of cloud water, and the rain size distribution. There is a doubling of the cloud water maximum mixing ratio, in addition to a prolonged existence of SLW, with the modified scheme compared with the original scheme. The spatial and temporal extent of cloud ice and snow are reduced, due to stricter conditions for ice nucleation. The findings are important as the HARMONIE-AROME models is used for operational forecasting in many countries in northern Europe having a colder climate, as well as for climate assessments over the Arctic region.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Engdahl, Bjørg Jenny Kokkvoll
Thompson, Gregory
Bengtsson, Lisa
Publisher UCAR/NCAR - Library
Publication Date 2020-01-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:30:27.925608
Metadata Record Identifier edu.ucar.opensky::articles:24115
Metadata Language eng; USA
Suggested Citation Engdahl, Bjørg Jenny Kokkvoll, Thompson, Gregory, Bengtsson, Lisa. (2020). Improving the representation of supercooled liquid water in the HARMONIE-AROME weather forecast model. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7r49v4w. Accessed 30 June 2025.

Harvest Source