Intercomparison of spatial forecast verification methods

Advancements in weather forecast models and their enhanced resolution have led to substantially improved and more realistic-appearing forecasts for some variables. However, traditional verification scores often indicate poor performance because of the increased small-scale variability so that the true quality of the forecasts is not always characterized well. As a result, numerous new methods for verifying these forecasts have been proposed. These new methods can mostly be classified into two overall categories: filtering methods and displacement methods. The filtering methods can be further delineated into neighborhood and scale separation, and the displacement methods can be divided into features based and field deformation. Each method gives considerably more information than the traditional scores, but it is not clear which method(s) should be used for which purpose. A verification methods intercomparison project has been established in order to glean a better understanding of the proposed methods in terms of their various characteristics and to determine what verification questions each method addresses. The study is ongoing, and preliminary qualitative results for the different approaches applied to different situations are described here. In particular, the various methods and their basic characteristics, similarities, and differences are described. In addition, several questions are addressed regarding the application of the methods and the information that they provide. These questions include (i) how the method(s) inform performance at different scales; (ii) how the methods provide information on location errors; (iii) whether the methods provide information on intensity errors and distributions; (iv) whether the methods provide information on structure errors; (v) whether the approaches have the ability to provide information about hits, misses, and false alarms; (vi) whether the methods do anything that is counterintuitive; (vii) whether the methods have selectable parameters and how sensitive the results are to parameter selection; (viii) whether the results can be easily aggregated across multiple cases; (ix) whether the methods can identify timing errors; and (x) whether confidence intervals and hypothesis tests can be readily computed.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2010 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Gilleland, Eric
Ahijevych, David
Brown, Barbara
Casati, Barbara
Ebert, Elizabeth
Publisher UCAR/NCAR - Library
Publication Date 2009-10-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:43:24.562780
Metadata Record Identifier edu.ucar.opensky::articles:17144
Metadata Language eng; USA
Suggested Citation Gilleland, Eric, Ahijevych, David, Brown, Barbara, Casati, Barbara, Ebert, Elizabeth. (2009). Intercomparison of spatial forecast verification methods. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7b56m0p. Accessed 28 June 2025.

Harvest Source