Mixed-precision for linear solvers in global geophysical flows

Semi-implicit (SI) time-stepping schemes for atmosphere and ocean models require elliptic solvers that work efficiently on modern supercomputers. This paper reports our study of the potential computational savings when using mixed precision arithmetic in the elliptic solvers. Precision levels as low as half (16 bits) are used and a detailed evaluation of the impact of reduced precision on the solver convergence and the solution quality is performed. This study is conducted in the context of a novel SI shallow-water model on the sphere, purposely designed to mimic numerical intricacies of modern all-scale weather and climate (W&C) models. The governing algorithm of the shallow-water model is based on the non-oscillatory MPDATA methods for geophysical flows, whereas the resulting elliptic problem employs a strongly preconditioned non-symmetric Krylov-subspace Generalized Conjugated-Residual (GCR) solver, proven in advanced atmospheric applications. The classical longitude/latitude grid is deliberately chosen to retain the stiffness of global W&C models. The analysis of the precision reduction is done on a software level, using an emulator, whereas the performance is measured on actual reduced precision hardware. The reduced-precision experiments are conducted for established dynamical-core test-cases, like the Rossby-Haurwitz wavenumber 4 and a zonal orographic flow. The study shows that selected key components of the elliptic solver, most prominently the preconditioning and the application of the linear operator, can be performed at the level of half precision. For these components, the use of half precision is found to yield a speed-up of a factor 4 compared to double precision for a wide range of problem sizes.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Ackmann, J.
Dueben, P. D.
Palmer, T.
Smolarkiewicz, Piotr
Publisher UCAR/NCAR - Library
Publication Date 2022-09-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T15:59:57.062808
Metadata Record Identifier edu.ucar.opensky::articles:25708
Metadata Language eng; USA
Suggested Citation Ackmann, J., Dueben, P. D., Palmer, T., Smolarkiewicz, Piotr. (2022). Mixed-precision for linear solvers in global geophysical flows. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7j106zg. Accessed 02 August 2025.

Harvest Source