Modeling snow ablation over the mountains of the western United States: Patterns and controlling factors

When compared with differences in snow accumulation predicted by widely used hydrological models, there is a much greater divergence among otherwise "good" models in their simulation of the snow ablation process. Here, we explore differences in the performance of the Variable Infiltration Capacity model (VIC), Noah land surface model with multiparameterization options (Noah-MP), the Catchment model, and the third-generation Simplified Simple Biosphere model (SiB3) in their ability to reproduce observed snow water equivalent (SWE) during the ablation season at 10 Snowpack Telemetry (SNOTEL) stations over 1992-2012. During the ablation period, net radiation generally has stronger correlations with observed melt rates than does air temperature. Average ablation rates tend to be higher (in both model predictions and observations) at stations with a large accumulation of SWE. The differences in the dates of last snow between models and observations range from several days to approximately a month (on average 5.1 days earlier than in observations). If the surface cover in the models is changed from observed vegetation to bare soil in all of the models, only the melt rate of the VIC model increases. The differences in responses of models to canopy removal are directly related to snowpack energy inputs, which are further affected by different algorithms for surface albedo and energy allocation across the models. We also find that the melt rates become higher in VIC and lower in Noah-MP if the shrub/grass present at the observation sites is switched to trees.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2021 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Xiao, Mu
Mahanama, Sarith P.
Xue, Yongkang
Chen, Fei
Lettenmaier, Dennis P.
Publisher UCAR/NCAR - Library
Publication Date 2021-02-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:30:18.336288
Metadata Record Identifier edu.ucar.opensky::articles:24400
Metadata Language eng; USA
Suggested Citation Xiao, Mu, Mahanama, Sarith P., Xue, Yongkang, Chen, Fei, Lettenmaier, Dennis P.. (2021). Modeling snow ablation over the mountains of the western United States: Patterns and controlling factors. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7902768. Accessed 29 June 2025.

Harvest Source