Next-day prediction of tornadoes using convection-allowing models with 1-km horizontal grid spacing

Explicit attributes of convective storms within convection-allowing model (CAM) forecasts are routinely used as surrogates for convective weather hazards. The ability of 3- and 1-km horizontal grid spacing CAM forecasts to anticipate tornadoes using surrogates was examined for 497 severe weather events. Five diagnostics were used as tornado surrogates, including 0–1 km above ground level (AGL) updraft helicity (UH01), 2–5 km AGL UH (UH25), 0–3 km AGL UH (UH03), and 500 m and 1 km AGL relative vorticity. Next-day surrogate severe probability forecasts (SSPFs) for tornadoes were produced by thresholding the diagnostics and smoothing the resulting binary field. SSPFs were verified against SPC tornado reports and NWS tornado warnings. The 1-km SSPFs were more skillful than 3-km SSPFs across all diagnostics with statistically significant differences in skill that were largest on the mesoscale. UH01 outperformed the other four diagnostics, in part because UH01 best represented regional variations in observed tornado report totals. Filtering forecasts based on the significant tornado parameter benefited the 3-km SSPFs much more than the 1-km SSPFs, with filtered 3-km SSPFs having similar skill to the filtered 1-km SSPFs. SSPFs verified with a combination of tornado warnings and reports were more skillful than when verified against reports alone, indicating that CAMs can better predict intense low-level rotation events than tornadoes. When verifying all severe hazards, UH25 SSPFs were more skillful than UH01 SSPFs; UH01 and UH25 appear to be the most useful pair for anticipating tornadoes and the combined severe threat on a given forecast day.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Service #1 : Cheyenne: SGI ICE XA Cluster

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2019 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Sobash, Ryan A.
Schwartz, Craig S.
Romine, Glen S.
Weisman, Morris L.
Publisher UCAR/NCAR - Library
Publication Date 2019-08-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:13:53.133198
Metadata Record Identifier edu.ucar.opensky::articles:22734
Metadata Language eng; USA
Suggested Citation Sobash, Ryan A., Schwartz, Craig S., Romine, Glen S., Weisman, Morris L.. (2019). Next-day prediction of tornadoes using convection-allowing models with 1-km horizontal grid spacing. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7s46tq8. Accessed 23 June 2025.

Harvest Source