Polar mesospheric ozone loss initiates downward coupling of solar signal in the Northern Hemisphere

Solar driven energetic particle precipitation (EPP) is an important factor in polar atmospheric ozone balance and has been linked to ground-level regional climate variability. However, the linking mechanism has remained ambiguous. The observed and simulated ground-level changes start well before the processes from the main candidate, the so-called EPP-indirect effect, would start. Here we show that initial reduction of polar mesospheric ozone and the resulting change in atmospheric heating rapidly couples to dynamics, transferring the signal downwards, shifting the tropospheric jet polewards. This pathway is not constrained to the polar vortex. Rather, a subtropical route initiated by a changing wind shear plays a key role. Our results show that the signal propagates downwards in timescales consistent with observed tropospheric level climatic changes linked to EPP. This pathway, from mesospheric ozone to regional climate, is independent of the EPP-indirect effect, and solves the long-standing mechanism problem for EPP effects on climate.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Dataset #1 : SC-WACCM specified polar mesospheric ozone loss dynamical response

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Seppälä, A.
Kalakoski, N.
Verronen, P. T.
Marsh, Daniel
Karpechko, A. Y.
Szelag, M. E.
Publisher UCAR/NCAR - Library
Publication Date 2025-01-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-10T19:55:15.603170
Metadata Record Identifier edu.ucar.opensky::articles:42690
Metadata Language eng; USA
Suggested Citation Seppälä, A., Kalakoski, N., Verronen, P. T., Marsh, Daniel, Karpechko, A. Y., Szelag, M. E.. (2025). Polar mesospheric ozone loss initiates downward coupling of solar signal in the Northern Hemisphere. UCAR/NCAR - Library. https://n2t.net/ark:/85065/d7s75mp0. Accessed 12 August 2025.

Harvest Source