Process-oriented MJO simulation diagnostic: Moisture sensitivity of simulated convection

Process-oriented diagnostics for Madden–Julian oscillation (MJO) simulations are being developed to facilitate improvements in the representation of the MJO in weather and climate models. These process-oriented diagnostics are intended to provide insights into how parameterizations of physical processes in climate models should be improved for a better MJO simulation. This paper proposes one such process-oriented diagnostic, which is designed to represent sensitivity of simulated convection to environmental moisture: composites of a relative humidity (RH) profile based on precipitation percentiles. The ability of the RH composite diagnostic to represent the diversity of MJO simulation skill is demonstrated using a group of climate model simulations participating in phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5). A set of scalar process metrics that captures the key physical attributes of the RH diagnostic is derived and their statistical relationship with indices that quantify the fidelity of the MJO simulation is tested. It is found that a process metric that represents the amount of lower-tropospheric humidity increase required for a transition from weak to strong rain regimes has a robust statistical relationship with MJO simulation skill. The results herein suggest that moisture sensitivity of convection is closely related to a GCM’s ability to simulate the MJO.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2014 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Kim, Daehyun
Xavier, Prince
Maloney, Eric
Wheeler, Matthew
Waliser, Duane
Sperber, Kenneth
Hendon, Harry
Zhang, Chidong
Neale, Richard
Hwang, Yen-Ting
Liu, Haibo
Publisher UCAR/NCAR - Library
Publication Date 2014-07-15T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:07:21.736074
Metadata Record Identifier edu.ucar.opensky::articles:14201
Metadata Language eng; USA
Suggested Citation Kim, Daehyun, Xavier, Prince, Maloney, Eric, Wheeler, Matthew, Waliser, Duane, Sperber, Kenneth, Hendon, Harry, Zhang, Chidong, Neale, Richard, Hwang, Yen-Ting, Liu, Haibo. (2014). Process-oriented MJO simulation diagnostic: Moisture sensitivity of simulated convection. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d74t6kbf. Accessed 23 June 2025.

Harvest Source