Robust Bayesian uncertainty analysis of climate system properties using Markov chain Monte Carlo methods

A Bayesian uncertainty analysis of 12 parameters of the Bern2.5D climate model is presented. This includes an extensive sensitivity study with respect to the major statistical assumptions. Special attention is given to the parameter representing climate sensitivity. Using the framework of robust Bayesian analysis, the authors first define a nonparametric set of prior distributions for climate sensitivity S and then update the entire set according to Bayes’ theorem. The upper and lower probability that S lies above 4.5°C is calculated over the resulting set of posterior distributions. Furthermore, posterior distributions under different assumptions on the likelihood function are computed. The main characteristics of the marginal posterior distributions of climate sensitivity are quite robust with regard to statistical models of climate variability and observational error. However, the influence of prior assumptions on the tails of distributions is substantial considering the important political implications. Moreover, the authors find that ocean heat change data have a considerable potential to constrain climate sensitivity.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2007 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Tomassini, Lorenzo
Reichert, L.
Knutti, Reto
Stocker, Thomas
Borsuk, Mark
Publisher UCAR/NCAR - Library
Publication Date 2007-04-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:38:52.779029
Metadata Record Identifier edu.ucar.opensky::articles:6952
Metadata Language eng; USA
Suggested Citation Tomassini, Lorenzo, Reichert, L., Knutti, Reto, Stocker, Thomas, Borsuk, Mark. (2007). Robust Bayesian uncertainty analysis of climate system properties using Markov chain Monte Carlo methods. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d74q7v7r. Accessed 23 June 2025.

Harvest Source