Sensitivity of 0-12-h warm-season precipitation forecasts over the central United States to model initialization

Sensitivity of 0-12 -h warm-season precipitation forecasts to atmospheric initial conditions, including those from different large-scale model analyses and from rapid cycled (RC) three-dimensional variational data assimilations (3DVAR) with and without radar data, is investigated for a 6-day period during the International H₂O Project. Neighborhood-based precipitation verification is used to compare forecasts made with the Advanced Research core of the Weather Research and Forecasting Model (ARW-WRF). Three significant convective episodes are examined by comparing the precipitation patterns and locations from different forecast experiments. From two of these three case studies, causes for the success and failure of the RC data assimilation in improving forecast skill are shown. Results indicate that the use of higher-resolution analysis in the initialization, rapid update cycling via WRF 3DVAR data assimilation, and the additional assimilation of radar observations each play a role in shortening the period of the initial precipitation spinup as well as in placing storms closer to observations, thus improving precipitation forecast skill by up to 8-9 h. Impacts of data assimilation differ for forecasts initialized at 0000 and 1200 UTC. The case studies show that the pattern and location of the forecasted precipitation were noticeably improved with radar data assimilation for the two late afternoon cases that featured lines of convection driven by surface-based cold pools. In contrast, the RC 3DVAR, both with and without radar data, had negative impacts on convective forecasts for a case of morning elevated convection associated with a midlatitude short-wave trough.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2012 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Sun, Juanzhen
Trier, Stanley
Xiao, Qingnong
Wang, Hongli
Ying, Zhuming
Xu, Mei
Zhang, Ying
Publisher UCAR/NCAR - Library
Publication Date 2012-08-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:49:48.027186
Metadata Record Identifier edu.ucar.opensky::articles:12178
Metadata Language eng; USA
Suggested Citation Sun, Juanzhen, Trier, Stanley, Xiao, Qingnong, Wang, Hongli, Ying, Zhuming, Xu, Mei, Zhang, Ying. (2012). Sensitivity of 0-12-h warm-season precipitation forecasts over the central United States to model initialization. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7tm7btb. Accessed 28 June 2025.

Harvest Source