Sensitivity of different physics schemes in the WRF model during a West African monsoon regime

A 2-month (August-September) regime of the year 2007 West African monsoon (WAM) was simulated with 27 physics combinations using the Weather Research and Forecasting model at 20-km horizontal grid. The objective is to examine WAM sensitivity to parameterization of microphysical, convective, and boundary layer processes for long-term simulation. The model precipitation was evaluated against the TRMM, CMORPH, and GPCP satellite rainfall products. The surface temperature was compared against the ERA-Interim, NCEP, MERRA, and global surface air temperature, an ensemble of the three reanalysis datasets. Model skill score (MSS) computed from a synthesis of the normalized correlation coefficient, mean bias, and mean absolute error was used to rank the model performance. Results show the model adequately simulates the diurnal cycles of surface temperature than precipitation, as well as the westward propagation of intense precipitation associated with the African easterly waves. The new Grell-Freitas (nGF) cumulus parameterization scheme (CPS) outperforms its predecessor especially when combined with the Mellor-Yamada-Nakanishi-Niino 2.5 (MYNN) planetary boundary layer scheme. The new simplified Arakawa-Schubert (nSAS) and Tiedtke CPSs produced better simulation of precipitation and surface temperature, respectively. The simulation of observed peak of diurnal precipitation in nSAS and nGF highlights success made towards a more realistic representation of convective processes by the schemes. Goddard microphysics and MYNN performed better for both variables. Based on the MSS, some relatively good and poorly performing combinations for precipitation and surface temperature were identified. The optimal combinations are however not separated in a statistically significant way and, thus, could be used for long-term simulation of WAM.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Dataset #1 : NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999

Related Dataset #2 : Global Hourly 0.5-degree Land Surface Air Temperature Datasets

Related Dataset #3 : GPCP Version 1.2 One-Degree Daily Precipitation Data Set

Related Service #1 : Cheyenne: SGI ICE XA Cluster

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2018 Author(s). This work is licensed under a Creative Commons Attribution 4.0 International license.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Gbode, Imoleayo
Dudhia, Jimy
Ogunjobi, Kehinde O.
Ajayi, Vincent O.
Publisher UCAR/NCAR - Library
Publication Date 2019-04-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:21:24.189995
Metadata Record Identifier edu.ucar.opensky::articles:22482
Metadata Language eng; USA
Suggested Citation Gbode, Imoleayo, Dudhia, Jimy, Ogunjobi, Kehinde O., Ajayi, Vincent O.. (2019). Sensitivity of different physics schemes in the WRF model during a West African monsoon regime. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7n3011x. Accessed 22 June 2025.

Harvest Source