Sensitivity of tropical cyclone intensity to ventilation in an axisymmetric model

The sensitivity of tropical cyclone intensity to ventilation of cooler, drier air into the inner core is examined using an axisymmetric tropical cyclone model with parameterized ventilation. Sufficiently strong ventilation induces cooling of the upper-level warm core, a shift in the secondary circulation radially outward, and a decrease in the simulated intensity. Increasing the strength of the ventilation and placing the ventilation at middle to lower levels results in a greater decrease in the quasi-steady intensity, whereas upper-level ventilation has little effect on the intensity. For strong ventilation, an oscillatory intensity regime materializes and is tied to transient convective bursts and strong downdrafts into the boundary layer.', The sensitivity of tropical cyclone intensity to ventilation can be viewed in the context of the mechanical efficiency of the inner core or a modified thermal wind relation. In the former, ventilation decreases the mechanical efficiency, as the generation of available potential energy is wasted by entropy mixing above the boundary layer. In the latter, ventilation weakens the eyewall entropy front, resulting in a decrease in the intensity by thermal wind arguments.', The experiments also support the existence of a threshold ventilation beyond which a tropical cyclone cannot be maintained. Downdrafts overwhelm surface fluxes, leading to a precipitous drop in intensity and a severe degradation of structure in such a scenario. For a given amount of ventilation below the threshold, there exists a minimum initial intensity necessary for intensification to the quasi-steady intensity.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2012 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Tang, Brian
Emanuel, Kerry
Publisher UCAR/NCAR - Library
Publication Date 2012-08-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:11:16.077568
Metadata Record Identifier edu.ucar.opensky::articles:17566
Metadata Language eng; USA
Suggested Citation Tang, Brian, Emanuel, Kerry. (2012). Sensitivity of tropical cyclone intensity to ventilation in an axisymmetric model. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7q81fdj. Accessed 23 June 2025.

Harvest Source