Spaceborne GPS remote sensing for atmospheric research

The global positioning system (GPS) is based on a constellation of 24 transmitter satellites orbiting the earth at approximately 21,000 km altitude. The original goal of the GPS was to provide global and all-weather precision positioning and navigation for the military. Since this original concept was developed, several civilian applications have been conceived that are making use of these satellites. GPS/MET is one such application. GPS/MET is sponsored by NSF, FAA, NOAA, and NASA. The goal of GPS/MET is to demonstrate the feasibility of recovering atmospheric temperature profiles from occulting radio signals from one of the 24 GPS transmitters. On April 3, 1995, a small radio receiver was launched into a 750 km low- earth orbit and 70 degree inclination. As this receiver orbits, occultations occur when the radio link between any one of the 24 GPS transmitters and the low-earth orbiting (LEO) receiver progressively descends or ascends through the earth's atmosphere. With the current constellation of GPS transmitters, approximately 500 such occultations occur in each 24-hour period per LEO receiver. Several hundred occultations have been analyzed to date, where some type of confirmational data has been available (i.e., radiosonde, satellite, numerical analysis gridded data). In this paper, we present a brief outline of the method followed by a few typical temperature soundings that have been obtained.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 1995 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Feng, Dasheng
Herman, Benjamin
Exner, Michael
Schreiner, William
Anthes, Richard
Ware, Randolph
Publisher UCAR/NCAR - Library
Publication Date 1995-11-21T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:17:38.953350
Metadata Record Identifier edu.ucar.opensky::articles:19006
Metadata Language eng; USA
Suggested Citation Feng, Dasheng, Herman, Benjamin, Exner, Michael, Schreiner, William, Anthes, Richard, Ware, Randolph. (1995). Spaceborne GPS remote sensing for atmospheric research. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7d79d5w. Accessed 26 June 2025.

Harvest Source