Tropical oceanic hot towers: Need they be undilute to Transport Energy from the Boundary Layer to the Upper Troposphere Effectively? An Answer Based on Trajectory Analysis of a simulation of a TOGA COARE convective system

This paper addresses questions resulting from the authors' earlier simulation of the 9 February 1993 Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Research Experiment (TOGA COARE) squall line, which used updraft trajectories to illustrate how updrafts deposit significant moist static energy (in terms of equivalent potential temperature θe) in the upper troposphere, despite dilution and a θe minimum in the midtroposphere. The major conclusion drawn from this earlier work was that the "hot towers" that Riehl and Malkus showed as necessary to maintain the Hadley circulation need not be undilute. It was not possible, however, to document how the energy (or θe) increased above the midtroposphere. To address this relevant scientific question, a high-resolution (300 m) simulation was carried out using a standard 3-ICE microphysics scheme (Lin-Farley-Orville). Detailed along-trajectory information also allows more accurate examination of the forces affecting each parcel’s vertical velocity W, their displacement, and the processes impacting θe, with focus on parcels reaching the upper troposphere. Below 1 km, pressure gradient acceleration forces parcels upward against negative buoyancy acceleration associated with the sum of (positive) virtual temperature excess and (negative) condensate loading. Above 1 km, the situation reverses, with the buoyancy (and thermal buoyancy) acceleration becoming positive and nearly balancing a negative pressure gradient acceleration, slightly larger in magnitude, leading to a W minimum at midlevels. The W maximum above 8 km and concomitant θe increase between 6 and 8 km are both due to release of latent heat resulting from the enthalpy of freezing of raindrops and riming onto graupel from 5 to 6.5 km and water vapor deposition onto small ice crystals and graupel pellets above that, between 7 and 10 km.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2012 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Fierro, Alexandre
Zipser, Edward
Lemone, Margaret
Straka, Jerry
Simpson, Joanne
Publisher UCAR/NCAR - Library
Publication Date 2012-01-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:22:06.216475
Metadata Record Identifier edu.ucar.opensky::articles:11980
Metadata Language eng; USA
Suggested Citation Fierro, Alexandre, Zipser, Edward, Lemone, Margaret, Straka, Jerry, Simpson, Joanne. (2012). Tropical oceanic hot towers: Need they be undilute to Transport Energy from the Boundary Layer to the Upper Troposphere Effectively? An Answer Based on Trajectory Analysis of a simulation of a TOGA COARE convective system. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d70c4wgg. Accessed 29 June 2025.

Harvest Source