Turbulent flow over steep steady and unsteady waves under strong wind forcing

Turbulent flow over strongly forced steep steady and unsteady waves is simulated using large-eddy simulation (LES) with time t and space x varying wave height h(x, t) imposed as a lower boundary condition. With steady waves, h(x, t) is based on measurements of incipient and active breaking waves collected in a wind-wave flume, while a numerical wave code is used to generate an unsteady evolving wave packet (group). Highly intermittent airflow separation is found in the simulations, and the results suggest separation near a wave crest occurs prior to the onset of wave breaking. The form (pressure) drag is most sensitive to the wave slope, and the form drag can contribute as much as 74% to the total stress. Wind and scalar profiles from the LES display log-linear variations above the wave surface; the LES wind profiles are in good agreement with the measurements. The momentum roughness increases as the water surface changes from wind ripples to incipient breaking to active breaking. However, the scalar roughness decreases as the wave surface becomes rougher. This highlights major differences in momentum and scalar transport over a rough wavy surface. For a rapidly evolving, strongly forced wave group, the form drag is highly correlated with the wave slope, and intermittent separation is found early in the packet evolution when the local wave slope -partial derivative h/partial derivative x(x, t) >= 0.22. The packet root-mean-square wave slope is 0.084, but the form drag fraction is 2.4 times larger than a comparably forced steady wave. Thus, a passing wave group can induce unsteadiness in the wind stress.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2018 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Sullivan, Peter P.
Banner, Michael L.
Morison, Russel P.
Peirson, William L.
Publisher UCAR/NCAR - Library
Publication Date 2018-01-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:18:43.197466
Metadata Record Identifier edu.ucar.opensky::articles:21578
Metadata Language eng; USA
Suggested Citation Sullivan, Peter P., Banner, Michael L., Morison, Russel P., Peirson, William L.. (2018). Turbulent flow over steep steady and unsteady waves under strong wind forcing. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7b27z05. Accessed 01 July 2025.

Harvest Source