Untangling microphysical impacts on deep convection applying a novel modeling methodology

Microphysical piggybacking applied previously in shallow convection simulations is employed to highlight microphysical impacts on deep convection. The main idea is to apply two sets of thermodynamic variables, one coupled to the dynamics and driving the simulation and the second one piggybacking the simulation: that is, responding to the simulated flow but not affecting it. The two sets can be driven either by different microphysical schemes or by the same scheme with different scheme parameters. For illustration, two single-moment bulk microphysical schemes are implemented, one with a simple representation of ice processes and the second one with a more comprehensive approach. Each scheme is applied assuming contrasting cloud droplet concentrations, pristine versus polluted, with simulations mimicking dynamical effects of pollution on deep convection. The modeling setup follows the case of daytime convective development over land based on observations during the Large-Scale Biosphere–Atmosphere (LBA) experiment in Amazonia. Microphysical piggybacking with small ensembles of simulations allows for separating dynamical and microphysical impacts on deep convection with high confidence and enables extracting small differences in the surface precipitation, cloud cover, and liquid and ice water paths with unprecedented accuracy. It also shows that the cloud buoyancy above the freezing level is only weakly affected by contrasting cloud droplet concentrations. The latter casts doubt on the convective invigoration hypothesis for the case of unorganized deep convection considered in this study, at least when investigated with a single-moment microphysical scheme.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2015 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Grabowski, Wojciech
Publisher UCAR/NCAR - Library
Publication Date 2015-06-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T22:41:05.569032
Metadata Record Identifier edu.ucar.opensky::articles:16691
Metadata Language eng; USA
Suggested Citation Grabowski, Wojciech. (2015). Untangling microphysical impacts on deep convection applying a novel modeling methodology. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7xk8gr2. Accessed 22 August 2025.

Harvest Source