Variability due to climate and chemistry in observations of oxygenated Earth-analogue exoplanets

The Great Oxidation Event was a period during which Earth's atmospheric oxygen (O-2) concentrations increased from similar to 10(-5) times its present atmospheric level (PAL) to near modern levels, marking the start of the Proterozoic geological eon 2.4 billion years ago. Using WACCM6, an Earth System Model, we simulate the atmosphere of Earth-analogue exoplanets with O-2 mixing ratios between 0.1 and 150 per cent PAL. Using these simulations, we calculate the reflection spectra over multiple orbits using the Planetary Spectrum Generator. We highlight how observer angle, albedo, chemistry, and clouds affect the simulated observations. We show that inter-annual climate variations, as well short-term variations due to clouds, can be observed in our simulated atmospheres with a telescope concept such as LUVOIR or HabEx. Annual variability and seasonal variability can change the planet's reflected flux (including the reflected flux of key spectral features such as O-2 and H2O) by up to factors of 5 and 20, respectively, for the same orbital phase. This variability is best observed with a high-throughput coronagraph. For example, HabEx (4 m) with a starshade performs up to a factor of two times better than a LUVOIR B (6 m) style telescope. The variability and signal-to-noise ratio of some spectral features depends non-linearly on atmospheric O-2 concentration. This is caused by temperature and chemical column depth variations, as well as generally increased liquid and ice cloud content for atmospheres with O-2 concentrations of <1 per cent PAL.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Cooke, G.J.
Marsh, Daniel R.
Walsh, C.
Rugheimer, S.
Villanueva, G.L.
Publisher UCAR/NCAR - Library
Publication Date 2023-01-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:40:53.633518
Metadata Record Identifier edu.ucar.opensky::articles:25931
Metadata Language eng; USA
Suggested Citation Cooke, G.J., Marsh, Daniel R., Walsh, C., Rugheimer, S., Villanueva, G.L.. (2023). Variability due to climate and chemistry in observations of oxygenated Earth-analogue exoplanets. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7m90dhh. Accessed 26 June 2025.

Harvest Source