Which combinations of environmental conditions and microphysical parameter values produce a given orographic precipitation distribution?

This study applies an idealized modeling framework, alongside a Bayesian Markov chain Monte Carlo (MCMC) algorithm, to explore which combinations of upstream environmental conditions and cloud microphysical parameter values can produce a particular precipitation distribution over an idealized two-dimensional, bell-shaped mountain. Simulations focus on orographic precipitation produced when an atmospheric river interacts with topography. MCMC-based analysis reveals that different combinations of parameter values produce a similar precipitation distribution, with the most influential parameters being relative humidity (RH), horizontal wind speed (U), surface potential temperature (theta (sfc)), and the snow fall speed coefficient (A(s)). RH, U, and A(s) exhibit interdependence: changes in one or more of these factors can be mitigated by compensating changes in the other(s) to produce similar orographic precipitation rates. The results also indicate that the parameter sensitivities and relationships can vary for spatial subregions and given different environmental conditions. In particular, high theta (sfc) values are more likely to produce the target precipitation rate and spatial distribution, and thus the ensemble of simulations shows a preference for liquid precipitation at the surface. The results presented here highlight the complexity of orographic precipitation controls, and have implications for flood and water management, observational efforts, and climate change.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2021 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Morales, Annareli
Posselt, Derek J.
Morrison, Hugh
Publisher UCAR/NCAR - Library
Publication Date 2021-02-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:28:39.860299
Metadata Record Identifier edu.ucar.opensky::articles:24385
Metadata Language eng; USA
Suggested Citation Morales, Annareli, Posselt, Derek J., Morrison, Hugh. (2021). Which combinations of environmental conditions and microphysical parameter values produce a given orographic precipitation distribution?. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d71n84jv. Accessed 28 June 2025.

Harvest Source