Systematic comparison of convection-allowing models during the 2017 NOAA HWT Spring Forecasting Experiment

The 2016-18 NOAA Hazardous Weather Testbed (HWT) Spring Forecasting Experiments (SFE) featured the Community Leveraged Unified Ensemble (CLUE), a coordinated convection-allowing model (CAM) ensemble framework designed to provide empirical guidance for development of operational CAM systems. The 2017 CLUE included 81 members that all used 3-km horizontal grid spacing over the CONUS, enabling direct comparison of forecasts generated using different dynamical cores, physics schemes, and initialization procedures. This study uses forecasts from several of the 2017 CLUE members and one operational model to evaluate and compare CAM representation and next-day prediction of thunderstorms. The analysis utilizes existing techniques and novel, object-based techniques that distill important information about modeled and observed storms from many cases. The National Severe Storms Laboratory Multi-Radar Multi-Sensor product suite is used to verify model forecasts and climatologies of observed variables. Unobserved model fields are also examined to further illuminate important intermodel differences in storms and near-storm environments. No single model performed better than the others in all respects. However, there were many systematic intermodel and intercore differences in specific forecast metrics and model fields. Some of these differences can be confidently attributed to particular differences in model design. Model intercomparison studies similar to the one presented here are important to better understand the impacts of model and ensemble configurations on storm forecasts and to help optimize future operational CAM systems.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2019 American Meteorological Society.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Potvin, C. K.
Carley, J. R.
Clark, A. J.
Wicker, L. J.
Skinner, P. S.
Reinhart, A. E.
Gallo, B. T.
Kain, J. S.
Romine, Glen
Aligo, E. A.
Brewster, K. A.
Dowell, D. C.
Harris, L. M.
Jirak, I. L.
Kong, F.
Supinie, T. A.
Thomas, K. W.
Wang, X.
Wang, Y.
Xue, M.
Publisher UCAR/NCAR - Library
Publication Date 2019-10-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T19:25:15.962725
Metadata Record Identifier edu.ucar.opensky::articles:22831
Metadata Language eng; USA
Suggested Citation Potvin, C. K., Carley, J. R., Clark, A. J., Wicker, L. J., Skinner, P. S., Reinhart, A. E., Gallo, B. T., Kain, J. S., Romine, Glen, Aligo, E. A., Brewster, K. A., Dowell, D. C., Harris, L. M., Jirak, I. L., Kong, F., Supinie, T. A., Thomas, K. W., Wang, X., Wang, Y., Xue, M.. (2019). Systematic comparison of convection-allowing models during the 2017 NOAA HWT Spring Forecasting Experiment. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d70v8gxp. Accessed 31 July 2025.

Harvest Source