Advancing solar magnetic field extrapolations through multiheight magnetic field measurements

Nonlinear force-free extrapolations are a common approach to estimate the 3D topology of coronal magnetic fields based on photospheric vector magnetograms. The force-free assumption is a valid approximation at coronal heights, but for the dense plasma conditions in the lower atmosphere, this assumption is not satisfied. In this study, we utilize multiheight magnetic field measurements in combination with physics-informed neural networks to advance solar magnetic field extrapolations. We include a flexible height-mapping, which allows us to account for the different formation heights of the observed magnetic field measurements. The comparison to analytical and simulated magnetic fields demonstrates that including chromospheric magnetic field measurements leads to a significant improvement of our magnetic field extrapolations. We also apply our method to chromospheric line-of-sight magnetograms from the Vector Spectromagnetograph (VSM) on the Synoptic Optical Long-term Investigations of the Sun (SOLIS) observatory, in combination with photospheric vector magnetograms from the Helioseismic Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). The comparison to observations in extreme-ultraviolet wavelengths shows that the additional chromospheric information leads to a better agreement with the observed coronal structures. In addition, our method intrinsically provides an estimate of the corrugation of the observed magnetograms. With this new approach, we make efficient use of multiheight magnetic field measurements and advance the realism of coronal magnetic field simulations.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Software #1 : Magnetic field extrapolations with Physics-Informed Neural Networks

Related Software #2 : SunPy

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Jarolim, Robert
Tremblay, Benoit
Rempel, Matthias
Molnar, Momchil
Veronig, A. M.
Thalmann, J. K.
Podladchikova, T.
Publisher UCAR/NCAR - Library
Publication Date 2024-03-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-10T20:03:43.674957
Metadata Record Identifier edu.ucar.opensky::articles:27042
Metadata Language eng; USA
Suggested Citation Jarolim, Robert, Tremblay, Benoit, Rempel, Matthias, Molnar, Momchil, Veronig, A. M., Thalmann, J. K., Podladchikova, T.. (2024). Advancing solar magnetic field extrapolations through multiheight magnetic field measurements. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7kw5m6d. Accessed 06 August 2025.

Harvest Source