Benchmark decadal forecast skill for terrestrial water storage estimated by an elasticity framework

A reliable decadal prediction of terrestrial water storage (TWS) is critical for a sustainable management of freshwater resources and infrastructures. However, the dependence of TWS forecast skill on the accuracy of initial hydrological conditions and decadal climate forecasts is not clear, and the baseline skill remains unknown. Here we use decadal climate hindcasts and perform hydrological ensemble simulations to estimate a benchmark decadal forecast skill for TWS over global major river basins with an elasticity framework that considers varying skill of initial conditions and climate forecasts. The initial condition skill elasticity is higher than climate forecast skill elasticity over many river basins at 1-4 years lead, suggesting the dominance of initial conditions at short leads. However, our benchmark skill for TWS is significantly higher than initial conditions-based forecast skill over 25 and 31% basins for the leads of 1-4 and 3-6 years, and incorporating climate prediction can significantly increase TWS prediction skill over half of the river basins at long leads, especially over mid- and high-latitudes. Our findings imply the possibility of improving decadal TWS forecasts by using dynamical climate prediction information, and the necessity of using the new benchmark skill for verifying the success of decadal hydrological forecasts.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Software #1 : NCAR Command Language (NCL)

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2019 Author(s). This work is licensed under a Creative Commons Attribution 4.0 International license.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Zhu, E.
Yuan, X.
Wood, Andrew
Publisher UCAR/NCAR - Library
Publication Date 2019-03-15T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T19:30:28.579375
Metadata Record Identifier edu.ucar.opensky::articles:22387
Metadata Language eng; USA
Suggested Citation Zhu, E., Yuan, X., Wood, Andrew. (2019). Benchmark decadal forecast skill for terrestrial water storage estimated by an elasticity framework. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7pg1vs6. Accessed 03 August 2025.

Harvest Source