Combining triple-moment ice with prognostic liquid fraction in the P3 microphysics scheme: Impacts on a simulated squall line

The Predicted Particle Properties (P3) bulk microphysics scheme has been recently modified to combine the two major innovations. The triple-moment approach to represent ice, allowing for a freely evolving spectral dispersion of the size distribution, is combined with the predicted liquid fraction, which enables an explicit representation of mixed-phase particles. The impacts of this combination are examined in the context of high-resolution (1-km horizontal grid spacing) simulations of an observed mid-latitude squall line using the Global Environmental Multiscale atmospheric model. The simulation of mixed-phase particles results in a faster squall line propagation speed and stronger cold pool due to greater cooling from the microphysical processes of sublimation, melting and evaporation. There is a reduction in the mass of ice reaching the surface resulting from a decrease in the mean size of melting ice particles aloft with the predicted liquid fraction. Compared to the original double-moment configuration, triple-moment P3 configuration results in larger mean ice sizes at the surface. The reflectivity structure is improved with the new version, now with a more pronounced bright band in the melting zone with the predicted liquid fraction.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Dataset #1 : NCEP/EMC 4KM Gridded Data (GRIB) Stage IV Data. Version 1.0

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2023 American Geophysical Union (AGU).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Cholette, M.
Milbrandt, J. A.
Morrison, Hugh
Paquin-Ricard, D.
Jacques, D.
Publisher UCAR/NCAR - Library
Publication Date 2023-04-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T15:53:00.455285
Metadata Record Identifier edu.ucar.opensky::articles:26344
Metadata Language eng; USA
Suggested Citation Cholette, M., Milbrandt, J. A., Morrison, Hugh, Paquin-Ricard, D., Jacques, D.. (2023). Combining triple-moment ice with prognostic liquid fraction in the P3 microphysics scheme: Impacts on a simulated squall line. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7dr30gv. Accessed 01 August 2025.

Harvest Source