Impacts of binning methods on high-latitude electrodynamic forcing: Static versus boundary-oriented binning methods

An outstanding issue in the general circulation model simulations for Earth's upper atmosphere is the inaccurate estimation of Joule heating, which could be associated with the inaccuracy of empirical models for high-latitude electrodynamic forcing. The binning methods used to develop those empirical models may contribute to the inaccuracy. Traditionally, data are binned through a static binning approach by using fixed geomagnetic coordinates, in which the dynamic nature of the forcing is not considered and therefore the forcing patterns may be significantly smeared. To avoid the smoothing issue, data can be binned according to some physically important boundaries in the high-latitude forcing, that is, through a boundary-oriented binning approach. In this study, we have investigated the sensitivity of high-latitude forcing patterns to the binning methods by applying both static and boundary-oriented binning approaches to the electron precipitation and electric potential data from the Defense Meteorological Satellite Program satellites. For this initial study, we have focused on the moderately strong and dominantly southward interplanetary magnetic field conditions. As compared with the static binning results, the boundary-oriented binning approach can provide a more confined and intense electron precipitation pattern. In addition, the magnitudes of the electric potential and electric field in the boundary-oriented binning results increase near the convection reversal boundary, leading to a ~11% enhancement of the cross polar cap potential. The forcing patterns obtained from both binning approaches are used to drive the Global Ionosphere and Thermosphere Model to assess the impacts on Joule heating by using different binning patterns. It is found that the hemispheric-integrated Joule heating in the simulation driven by the boundary-oriented binning patterns is 18% higher than that driven by the static binning patterns.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Software #1 : lkilcommons/ssj_auroral_boundary: Version 1

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2020 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Zhu, Q.
Deng, Y.
Richmond, Arthur D.
Maute, Astrid
Chen, Y.
Hairston, M.
Kilcommons, L.
Knipp, Delores J.
Redmon, R.
Mitchell, E.
Publisher UCAR/NCAR - Library
Publication Date 2020-01-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T19:22:37.952342
Metadata Record Identifier edu.ucar.opensky::articles:23340
Metadata Language eng; USA
Suggested Citation Zhu, Q., Deng, Y., Richmond, Arthur D., Maute, Astrid, Chen, Y., Hairston, M., Kilcommons, L., Knipp, Delores J., Redmon, R., Mitchell, E.. (2020). Impacts of binning methods on high-latitude electrodynamic forcing: Static versus boundary-oriented binning methods. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d71z44kw. Accessed 01 August 2025.

Harvest Source