Importance of regional climate model grid spacing for the simulation of heavy precipitation in the Colorado headwaters

Summer and winter daily heavy precipitation events (events above the 97.5th percentile) are analyzed in regional climate simulations with 36-, 12-,and 4-km horizontal grid spacing over the headwaters of the Colorado River. Multiscale evaluations are useful to understand differences across horizontal scales and to evaluate the effects of upscaling finescale processes to coarser-scale features associated with precipitating systems. Only the 4-km model is able to correctly simulate precipitation totals of heavy summertime events. For winter events, results from the 4- and 12-km grid models are similar and outperform the 36-km simulation. The main advantages of the 4-km simulation are the improved spatial mesoscale patterns of heavy precipitation (below ∼100 km). However, the 4-km simulation also slightly improves larger-scale patterns of heavy precipitation.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2013 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Prein, A.
Holland, Gregory J.
Rasmussen, Roy M.
Done, James M.
Ikeda, Kyoko
Clark, Martyn P.
Liu, Changhai
Publisher UCAR/NCAR - Library
Publication Date 2013-07-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-15T21:26:30.373174
Metadata Record Identifier edu.ucar.opensky::articles:12766
Metadata Language eng; USA
Suggested Citation Prein, A., Holland, Gregory J., Rasmussen, Roy M., Done, James M., Ikeda, Kyoko, Clark, Martyn P., Liu, Changhai. (2013). Importance of regional climate model grid spacing for the simulation of heavy precipitation in the Colorado headwaters. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d77w6d2d. Accessed 31 July 2025.

Harvest Source