Multivariate minimum residual method for cloud retrieval. Part I: Theoretical aspects and simulated observation experiments

A new method is presented for cloud detection and the retrieval of three-dimensional cloud fraction from satellite infrared radiances. This method, called multivariate minimum residual (MMR), is inspired by the minimum residual technique by Eyre and Menzel and is especially suitable for exploiting the large number of channels from hyperspectral infrared sounders. Its accuracy is studied in a theoretical framework where the observations and the numerical model are supposed perfect. Of particular interest is the number of independent information that can be found on the cloud according to the number of channels used. The technical implementation of the method is also briefly discussed. The MMR scheme is validated with the Atmospheric Infrared Sounder (AIRS) instrument using simulated observations. This new method is compared with the cloud-detection scheme from McNally and Watts that is operational at the European Centre for Medium-Range Weather Forecasts (ECMWF) and considered to be the state of the art in cloud detection for hyperspectral infrared sounders

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2014 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Auligne, Thomas D.
Publisher UCAR/NCAR - Library
Publication Date 2014-12-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-12T00:03:50.728309
Metadata Record Identifier edu.ucar.opensky::articles:14496
Metadata Language eng; USA
Suggested Citation Auligne, Thomas D.. (2014). Multivariate minimum residual method for cloud retrieval. Part I: Theoretical aspects and simulated observation experiments. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d71j9brc. Accessed 31 July 2025.

Harvest Source