Object-based analog forecasts for surface wind speed

Analogs are used as a forecast postprocessing technique, in which a statistical forecast is derived from past prognostic states. This study proposes a method to identify analogs through spatial objects, which are then used to create forecast ensembles. The object-analog technique preserves the field's spatial relationships, reduces spatial dimensionality, and consequently facilitates the use of artificial intelligence algorithms to improve analog selection. Forecast objects are created with a three-step object selection, combining standard image processing algorithms. The resulting objects are used to find similar forecasts in a training set with a similarity measure based on object area intersection and magnitude. Storm-induced power outages in the Northeast United States motivated the method's validation for 10-m AGL wind speed forecasts. The training set comprises reforecasts and reanalyses of events that caused damages to the utility infrastructure. The corresponding reanalyses of the best reforecast analogs are used to produce the object-analog ensemble forecasts. The forecasts are compared with other analog forecast methods. Analogs representing lower and upper predictability limits provide references to distinguish the method's ability (to find good analogs) from the training set's ability (to provide good analogs) to generate skillful ensemble forecasts. The object-analog forecasts are competitively skillful compared to simpler analog techniques with an advantage of lower spatial dimensionality, while generating reliable ensemble forecasts, with reduced systematic and random errors, maintaining correlation, and improving Brier scores.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2017 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Frediani, M. E. B.
Hopson, Thomas M.
Hacker, Joshua P.
Anagnostou, E. N.
Delle Monache, Luca
Vandenberghe, François
Publisher UCAR/NCAR - Library
Publication Date 2017-12-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T19:44:05.133242
Metadata Record Identifier edu.ucar.opensky::articles:21543
Metadata Language eng; USA
Suggested Citation Frediani, M. E. B., Hopson, Thomas M., Hacker, Joshua P., Anagnostou, E. N., Delle Monache, Luca, Vandenberghe, François. (2017). Object-based analog forecasts for surface wind speed. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d77m0bn5. Accessed 31 July 2025.

Harvest Source