Sensitivity of tornado dynamics to soil debris loading

Past numerical simulation studies found that debris loading from sand-sized particles may substantially affect tornado dynamics, causing reductions in near-surface wind speeds up to 50%. To further examine debris loading effects, simulations are performed using a large-eddy simulation model with a two-way drag force coupling between air and sand. Simulations encompass a large range of surface debris fluxes that cause negligible to substantial impact on tornado dynamics for a high-swirl tornado vortex simulation. Simulations are considered for a specific case with a single vortex flow type (swirl ratio, intensity, and translation velocity) and a fixed set of debris and aerodynamic parameters. Thus, it is stressed that these findings apply to the specific flow and debris parameters herein and would likely vary for different flows or debris parameters. For this specific case, initial surface debris fluxes are varied over a factor of 16 384, and debris cloud mass varies by only 42% of this range because a negative feedback reduces near-surface horizontal velocities. Debris loading effects on the axisymmetric mean flow are evident when maximum debris loading exceeds 0.1 kg kg⁻¹, but instantaneous maximum wind speed and TKE exhibit small changes at smaller debris loadings (greater than 0.01 kg kg⁻¹). Initially, wind speeds are reduced in a shallow, near-surface layer, but the magnitude and depth of these changes increases with higher debris loading. At high debris loading, near-surface horizontal wind speeds are reduced by 30%-60% in the lowest 10 m AGL. In moderate and high debris loading scenarios, the number and intensity of subvortices also decrease close to the surface.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2016 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Bodine, David
Maruyama, T.
Palmer, R.
Fulton, C.
Bluestein, H.
Lewellen, D.
Publisher UCAR/NCAR - Library
Publication Date 2016-07-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T20:47:12.510046
Metadata Record Identifier edu.ucar.opensky::articles:18594
Metadata Language eng; USA
Suggested Citation Bodine, David, Maruyama, T., Palmer, R., Fulton, C., Bluestein, H., Lewellen, D.. (2016). Sensitivity of tornado dynamics to soil debris loading. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7st7rh1. Accessed 09 August 2025.

Harvest Source