Subpolar North Atlantic Mean State affects the response of the Atlantic Meridional Overturning Circulation to the North Atlantic Oscillation in CMIP6 models

The Atlantic meridional overturning circulation (AMOC) plays an important role in climate, transporting heat and salt to the subpolar North Atlantic. The AMOC’s variability is sensitive to atmospheric forcing, especially the North Atlantic Oscillation (NAO). Because AMOC observations are short, climate models are a valuable tool to study the AMOC’s variability. Yet, there are known issues with climate models, like uncertainties and systematic biases. To investigate this, preindustrial control experiments from models participating in the phase 6 of Coupled Model Intercomparison Project (CMIP6) are evaluated. There is a large, but correlated, spread in the models’ subpolar gyre mean surface temperature and salinity. By splitting models into groups of either a warm–salty or cold–fresh subpolar gyre, it is shown that warm–salty models have a lower sea ice cover in the Labrador Sea and, hence, enable a larger heat loss during a positive NAO. Stratification in the Labrador Sea is also weaker in warm–salty models, such that the larger NAO-related heat loss can also affect greater depths. As a result, subsurface density anomalies are much stronger in the warm–salty models than in those that tend to be cold and fresh. As these anomalies propagate southward along the western boundary, they establish a zonal density gradient anomaly that promotes a stronger delayed AMOC response to the NAO in the warm–salty models. These findings demonstrate how model mean state errors are linked across variables and affect variability, emphasizing the need for improvement of the subpolar North Atlantic mean states in models.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Software #1 : Analysis codes for reproducing the figures of the study on 'Subpolar North Atlantic mean state affects the response of the Atlantic Meridional Overturning Circulation to the North Atlantic Oscillation in CMIP6 models'

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Reintges, A.
Robson, J. I.
Sutton, R.
Yeager, Stephen
Publisher UCAR/NCAR - Library
Publication Date 2024-11-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-10T19:57:15.879378
Metadata Record Identifier edu.ucar.opensky::articles:42441
Metadata Language eng; USA
Suggested Citation Reintges, A., Robson, J. I., Sutton, R., Yeager, Stephen. (2024). Subpolar North Atlantic Mean State affects the response of the Atlantic Meridional Overturning Circulation to the North Atlantic Oscillation in CMIP6 models. UCAR/NCAR - Library. https://n2t.net/ark:/85065/d74j0kfr. Accessed 05 August 2025.

Harvest Source