Subseasonal representation and predictability of North American weather regimes using cluster analysis

This study focuses on assessing the representation and predictability of North American weather regimes, which are persistent large-scale atmospheric patterns, in a set of initialized subseasonal reforecasts created using the Community Earth System Model, version 2 (CESM2). The k-means clustering was used to extract four key North American (10°–70°N, 150°–40°W) weather regimes within ERA5 reanalysis, which were used to interpret CESM2 subseasonal forecast performance. Results show that CESM2 can recreate the climatology of the four main North American weather regimes with skill but exhibits biases during later lead times with overoccurrence of the West Coast high regime and underoccurrence of the Greenland high and Alaskan ridge regimes. Overall, the West Coast high and Pacific trough regimes exhibited higher predictability within CESM2, partly related to El Niño. Despite biases, several reforecasts were skillful and exhibited high predictability during later lead times, which could be partly attributed to skillful representation of the atmosphere from the tropics to extratropics upstream of North America. The high predictability at the subseasonal time scale of these case-study examples was manifested as an "ensemble realignment," in which most ensemble members agreed on a prediction despite ensemble trajectory dispersion during earlier lead times. Weather regimes were also shown to project distinct temperature and precipitation anomalies across North America that largely agree with observational products. This study further demonstrates that unsupervised learning methods can be used to uncover sources and limits of subseasonal predictability, along with systematic biases present in numerical prediction systems.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2024 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Molina, Maria
Richter, Jadwiga H.
Glanville, Anne A.
Dagon, Katherine
Berner, Judith
Hu, Aixue
Meehl, Gerald A.
Publisher UCAR/NCAR - Library
Publication Date 2023-04-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T15:52:59.684812
Metadata Record Identifier edu.ucar.opensky::articles:27158
Metadata Language eng; USA
Suggested Citation Molina, Maria, Richter, Jadwiga H., Glanville, Anne A., Dagon, Katherine, Berner, Judith, Hu, Aixue, Meehl, Gerald A.. (2023). Subseasonal representation and predictability of North American weather regimes using cluster analysis. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7fn1bdm. Accessed 06 August 2025.

Harvest Source