The influence of vertical wind shear on moist thermals

Although it is well established that vertical wind shear helps to organize and maintain convective systems, there is a longstanding colloquial notion that it inhibits the development of deep convection. To investigate this idea, the vertical momentum budgets of sheared and unsheared moist thermals were compared in idealized cloud model simulations. Consistent with the idea of vertical wind shear inhibiting convective development, convection generally deepened at a slower rate in sheared simulations than in unsheared simulations, and the termination heights of thermals in sheared runs were correspondingly lower. These differences in deepening rates resulted from weaker vertical acceleration of thermals in the sheared compared to the unsheared runs. Downward-oriented dynamic pressure acceleration was enhanced by vertical wind shear, which was the primary reason for relatively weak upward acceleration of sheared thermals. This result contrasts with previous ideas that entrainment or buoyant perturbation pressure accelerations are the primary factors inhibiting the growth of sheared convection. A composite thermal analysis indicates that enhancement of dynamic pressure acceleration in the sheared runs is caused by asymmetric aerodynamic lift forces associated with shear-driven cross flow perpendicular to the direction of the thermals' ascent. These results provide a plausible explanation for why convection is slower to deepen in sheared environments and why slanted convection tends to be weaker than upright convection in squall lines.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2019 American Meteorological Society.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Peters, J. M.
Hannah, W.
Morrison, Hugh
Publisher UCAR/NCAR - Library
Publication Date 2019-06-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T19:28:30.812260
Metadata Record Identifier edu.ucar.opensky::articles:22549
Metadata Language eng; USA
Suggested Citation Peters, J. M., Hannah, W., Morrison, Hugh. (2019). The influence of vertical wind shear on moist thermals. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7p55rm4. Accessed 20 August 2025.

Harvest Source