Improving the radiance assimilation performance in estimating snow water storage across snow and land-cover types in North America

Continental-scale snow radiance assimilation (RA) experiments are conducted in order to improve snow estimates across snow and land-cover types in North America. In the experiments, the ensemble adjustment Kalman filter is applied and the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) brightness temperature TB observations are assimilated into an RA system composed of the Community Land Model, version 4 (CLM4); radiative transfer models (RTMs); and the Data Assimilation Research Testbed (DART). The performance of two snowpack RTMs, the Dense Media Radiative Transfer–Multi-Layers model (DMRT-ML), and the Microwave Emission Model of Layered Snowpacks (MEMLS) in improving snow depth estimates through RA is compared. Continental-scale snow estimates are enhanced through RA by using AMSR-E TB at the 18.7- and 23.8-GHz channels [3% (DMRT-ML) and 2% (MEMLS) improvements compared to the cases using the 18.7- and 36.5-GHz channels] and by considering the vegetation single-scattering albedo ω [2.5% (DMRT-ML) and 4.8% (MEMLS) improvements compared to the cases neglecting ω]. The contribution of TB of the vegetation canopy to TB at the top of the atmosphere is better represented by considering ω in the RA system, and improvements in the resulting snow depth are evident for the forest land-cover type (about 5%-11%) and the taiga and alpine snow classes (about 5%-11% and 4%-8%, respectively), especially in the MEMLS case. Compared to the open-loop run (0.171-m snow depth RMSE), about 7% (DMRT-ML) and 10% (MEMLS) overall improvements of the RA performance are achieved.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Dataset #1 : AMSR-E/Aqua Daily Global Quarter-Degree Gridded Brightness Temperatures, Version 1

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2017 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Kwon, Yonghwan
Yang, Zong-Liang
Hoar, Timothy J.
Toure, Ally M.
Publisher UCAR/NCAR - Library
Publication Date 2017-03-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:10:43.606894
Metadata Record Identifier edu.ucar.opensky::articles:19464
Metadata Language eng; USA
Suggested Citation Kwon, Yonghwan, Yang, Zong-Liang, Hoar, Timothy J., Toure, Ally M.. (2017). Improving the radiance assimilation performance in estimating snow water storage across snow and land-cover types in North America. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7dr2x8z. Accessed 21 June 2025.

Harvest Source