Impact of mixing and chemical change on ozone-tracer relations in the polar vortex

Tracer-tracer relations have been used for a long time to separate physico-chemical change from change caused by transport processes. In particular, for more than a decade, ozone-tracer relations have been used to quantify chemical ozone loss in the polar vortex. The application of ozone-tracer relations for quantifying ozone loss relies on two hypotheses: that a compact ozone-tracer relation is established in the 'early' polar vortex and that any change of the ozone-tracer relation in the vortex over the course of winter is caused predominantly by chemical ozone loss. Here, we revisit this issue by analysing various sets of measurements and the results from several models. We find that mixing across the polar vortex edge impacts ozone-tracer relations in a way that may solely lead to an 'underestimation' of chemical ozone loss and not to an overestimation. Further, differential descent in the vortex and internal mixing has only a negligible impact on ozone loss estimates. Moreover, the representation of mixing in three-dimensional atmospheric models can have a substantial impact on the development of tracer relations in the model. Rather compact ozone-tracer relations develop – in agreement with observations – in the vortex of a Lagrangian model (CLaMS) where mixing is anisotropic and driven by the deformation of the flow. We conclude that, if a reliable 'early vortex' reference can be obtained and if vortex measurements are separated from mid-latitude measurements, ozone-tracer relations constitute a reliable tool for the quantitative determination of chemical ozone loss in the polar vortex.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright status for this publication is unknown. Please contact the author for further information.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Mueller, R.
Tilmes, Simone
Konopka, P.
Grooss, J.
Jost, H.
Publisher UCAR/NCAR - Library
Publication Date 2005-11-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-17T17:06:49.483183
Metadata Record Identifier edu.ucar.opensky::articles:10192
Metadata Language eng; USA
Suggested Citation Mueller, R., Tilmes, Simone, Konopka, P., Grooss, J., Jost, H.. (2005). Impact of mixing and chemical change on ozone-tracer relations in the polar vortex. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7zs2x2k. Accessed 02 August 2025.

Harvest Source