Pushing the Limit: A Hybrid Parallel Implementation of the Multi-resolution Approximation for Massive Data

The multi-resolution approximation (MRA) of Gaussian processes was recently proposed to conduct likelihood-based inference for massive spatial data sets. An advantage of the methodology is that it can be parallelized. We implemented the MRA in C++ for both serial and parallel versions. In the parallel implementation, we use a hybrid parallelism that employs both distributed and shared memory computing for communications between and within nodes by using the Message Passing Interface (MPI) and OpenMP, respectively. The performance of the serial code is compared between the C++ and MATLAB implementations over a small data set on a personal laptop. The C++ parallel program is further carefully studied under different configurations by applications to data sets from around a tenth of a million to 47 million observations. We show the practicality of this implementation by demonstrating that we can get quick inference for massive real-world data sets. The serial and parallel C++ code can be found at https://github.com/hhuang90.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright Author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Huang, Huang
Blake, Lewis
Hammerling, Dorit
Publisher UCAR/NCAR - Library
Publication Date 2019-04-30T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T19:29:31.643618
Metadata Record Identifier edu.ucar.opensky::technotes:577
Metadata Language eng; USA
Suggested Citation Huang, Huang, Blake, Lewis, Hammerling, Dorit. (2019). Pushing the Limit: A Hybrid Parallel Implementation of the Multi-resolution Approximation for Massive Data. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7vq35r6. Accessed 02 August 2025.

Harvest Source