The synthesis of potential factors contributing to the asynchronous warming between air and shallow ground since the 2000s on the Tibetan Plateau

Atmospheric conditions, topsoil properties and land cover conditions play essential roles in ground surface temperature (GST), surface air temperature (SAT) and their differences (GST-SAT). They determine the strength of the thermal forcing of the lower atmospheric boundary and the distributions of frozen ground in cold regions. However, the relative importance of these factors at various time scales and the underlying physical mechanisms remain less well understood. Here, we investigate the spatiotemporal patterns of GST-SAT and examine 11 potential factors in three categories in influencing the GST-SAT variations from 1983 to 2019 over the Tibetan Plateau (TP) using boosted regression tree models. The results show that the TP has experienced asynchronous warming in GST and SAT since 2001: a warming hiatus in SAT but continued warming in GST, resulting in a significantly increasing trend in GST-SAT. The relative importance of the three categories that influence the GSTSAT spatial variation was: atmospheric variables (56.1 %) > shallow soil properties (24.4 %) > interfacial land cover features (19.5 %). The importance of the factors also varied with the combinations of annual, seasonal, daily, day-time and night-time time scales, manifested by positive or negative effects. The interdecadal changes of net radiation, precipitation, wind speed and soil moisture amplified the asynchronous warming between air and shallow ground over the TP since the 2000s. These findings provide an in-depth understanding of the spatiotemporal variations of GST-SAT and the underlying mechanisms. This study will benefit the development of the Earth system models on the TP.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Li, N.
Cuo, L.
Zhang, Yongxin
Ding, J.
Publisher UCAR/NCAR - Library
Publication Date 2024-01-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-10T20:05:24.759347
Metadata Record Identifier edu.ucar.opensky::articles:26918
Metadata Language eng; USA
Suggested Citation Li, N., Cuo, L., Zhang, Yongxin, Ding, J.. (2024). The synthesis of potential factors contributing to the asynchronous warming between air and shallow ground since the 2000s on the Tibetan Plateau. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d75t3qn9. Accessed 03 August 2025.

Harvest Source