Enhancing urban thermal environment and energy sustainability with temperature‐adaptive radiative roofs

Urban overheating presents significant challenges to public health and energy sustainability. Conventional radiative cooling strategies, such as cool roofs with high albedo, lead to undesired winter cooling and increased space heating demand for cities with cold winters, a phenomenon known as heating energy penalty. A novel roof coating with high albedo and temperature‐adaptive emissivity (TAE)—low emissivity during cold conditions and high emissivity during hot conditions—has the potential to mitigate winter heating energy penalty. In this study, we implement this roof coating in a global climate model to evaluate its impact on air temperature and building energy demand for space heating and cooling in global cities. Adopting roofs with TAE increases global urban air temperature by up to +0.54°C in the winter (99th percentile; mean change +0.16°C) but has negligible effects on summer urban air temperature (mean change +0.05°C). Combining TAE with high albedo effectively provides summer cooling and does not increase building energy demand in the winter, particularly for mid‐latitude cities. Sensitivities of air temperature to changes in emissivity and albedo are associated with local “apparent” net longwave radiation and incoming solar radiation, respectively. We propose a simple parameterization of air temperature responses to emissivity and albedo to facilitate the development of city‐specific radiative mitigation strategies. This study emphasizes the necessity of developing mitigation approaches specific to local cloudiness.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Dataset #1 : Enhancing Urban Thermal Environment and Energy Sustainability with Temperature-adaptive Emissivity Roofs

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Zhang, K.
Zhao, L.
Oleson, Keith W.
Li, X.
Lee, X.
Publisher UCAR/NCAR - Library
Publication Date 2025-01-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-10T19:55:12.047738
Metadata Record Identifier edu.ucar.opensky::articles:42660
Metadata Language eng; USA
Suggested Citation Zhang, K., Zhao, L., Oleson, Keith W., Li, X., Lee, X.. (2025). Enhancing urban thermal environment and energy sustainability with temperature‐adaptive radiative roofs. UCAR/NCAR - Library. https://n2t.net/ark:/85065/d7ns107g. Accessed 02 August 2025.

Harvest Source